Abstract

The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze and compare whole-brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole-brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC- and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.