Abstract

Global stressors are increasingly altering ecosystem resistance, resilience, and functioning by reorganizing vital species interactions. However, our predictive understanding of these changes is hindered by failures to consider species-specific functional roles and stress responses within communities. Stressor-driven loss or reduced performance of strongly interacting species may generate abrupt shifts in ecosystem states and functions. Yet, empirical support for this prediction is scarce, especially in marine climate change research. Using a marine assemblage comprising a habitat-forming seagrass (Phyllospadix torreyi), its algal competitor, and three consumer species (algal grazers) with potentially different functional roles and pH tolerance, we investigated how ocean acidification (OA) may, directly and indirectly, alter community resistance. In the field and laboratory, hermit crabs (Pagurus granosimanus and P. hirsutiusculus) and snails (Tegula funebralis) displayed distinct microhabitat use, with hermit crabs more frequently grazing in the area of high algal colonization (i.e., surfgrass canopy). In mesocosms, this behavioral difference led to hermit crabs exerting ~2 times greater per capita impact on algal epiphyte biomass than snails. Exposure to OA variably affected the grazers: snails showed reduced feeding and growth under extreme pH (7.3 and 7.5), whereas hermit crabs (P. granosimanus) maintained a similar grazing rate under all pH levels (pH 7.3, 7.5, 7.7, and 7.95). Epiphyte biomass increased more rapidly under extreme OA (pH 7.3 and 7.5), but natural densities of snails and hermit crabs prevented algal overgrowth irrespective of pH treatments. Finally, grazers and acidification additively increased surfgrass productivity and delayed the shoot senescence. Hence, although OA impaired the function of the most abundant consumers (snails), strongly interacting and pH-tolerant species (hermit crabs) largely maintained the top-down pressure to facilitate seagrass dominance. Our study highlights significant within-community variation in species functional and response traits and shows that this variation has important ecosystem consequences under anthropogenic stressors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call