Abstract

Several skin surface-based techniques exist to non-invasively determine the spinal kinematics. However, the accuracy of these techniques is limited by soft-tissue artefacts. Furthermore, structures like the thorax are frequently assumed to be rigid but display considerable mobility within itself. This study aimed to quantify the accuracy at different thoracic landmarks for measuring mobility in healthy individuals during different activities to provide a recommendation for the best suited measurement location.The locations of 29 landmarks were continuously captured on 19 individuals (age: 25–59 years) during sitting, standing, walking, jumping, intra-thoracic motions, and different breathing depths using reflective markers. Marker triplets were used at every landmark to calculate their orientations by first backtracking the rigid-body motion (RBM) of the thorax in general, and subsequently calculating the RBM of each rigid marker triplet. Of the latter, the maximum axis angle for each exercise was statistically evaluated.Landmarks at the middle of the clavicles displayed the largest overall errors (approximately 90° during worst case scenario). However, the variability of errors among the investigated exercises was large. Landmarks at the cranial sternal region (particularly at the “Louis angle”) and at the T3 spinous process showed the smallest errors for all subjects and tasks (e.g., <5° and <11°, respectively, during normal breathing).When only one sensor is to be used, it is recommended to use the cranial sternal region to assess the thoracic orientation. Study results highly sensitive to thoracic orientation should be considered with care or performed using more appropriate methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.