Abstract
People with balance impairments often struggle performing turns or lateral maneuvers, which can increase risk of falls and injuries. Here we asked how people’s mediolateral balance is impacted when walking on non-straight winding paths. Twenty-four healthy adults (12F / 12M; 25.8±3.5 yrs) participated. Each walked on each of six paths projected onto a treadmill, comprised of three pseudo-random path oscillation frequency combinations (straight, slowly-winding, quickly-winding), each presented at either wide or narrow width. We quantified stepping errors as the percent of steps taken off each path. We quantified minimum mediolateral Margin of Stability (MoSL) at each step and calculated means (μ) and standard deviations (σ) for each trial. We calculated lateral Probability of Instability (PoIL) as participants’ statistical risk of taking unstable (MoSL < 0) steps. On narrower paths, participants made more stepping errors and walked with smaller μ(MoSL) for all path frequencies (p < 0.001), and exhibited increased PoIL on the straight and slowly-winding paths (p < 0.001). On winding paths, participants made progressively more stepping errors and walked with smaller μ(MoSL) as oscillation frequency increased on narrow paths (all p < 0.001) and on the wide quickly-winding paths (all p < 0.001). They also consistently walked with larger σ(MoSL), and increased PoILon higher sinuosity paths of both widths (all p < 0.001). Though many took numerous unstable steps, no participant fell. Our results demonstrate healthy adults’ ability both to trade off increased risk of lateral instability for greater maneuverability, and to employ highly-versatile stepping strategies to maintain balance while walking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.