Abstract
While oil prices raise and the supply remains unsteady, it may be beneficial to use the high content of energy available in food processing wastes, such as cheese whey waste, by converting it to bioenergy. As well, there have been many new waste biotreatment technologies developed recently, which may well be used directly to food processing wastes. Microbial fuel cell represents a new technology for simultaneous use of waste materials and bioelectricity generation. In this study, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with mediators. E.coli was able to use the carbohydrate found in whey to generate bioelectricity. The open-circuit voltage in absence of mediator was 751.5mV at room temperature. The voltage was stable for more than 24 h. Riboflavin and humic acid were used as conceivable mediators. The results showed that humic acid was a few times more effective than Riboflavin. Additionally, four chemicals employed as catholyte. Based on polarization curve, FeCl3 (III) was the best. Maximum power generation and current were 324.8 μW and 1194.6μA, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.