Abstract
Agroecosystems provide abundant resources to insects. However, throughout the off-season, insects must overcome resource shortages and adverse climates to survive. This off-season persistence affects pest infestations in subsequent crops or seasons. Key pest species employ diapause, migration, and local-scale dispersal to persist during the off-season. Genomic approaches have advanced our understanding of these survival mechanisms. Clock genes regulate the circadian rhythm and interact with neuropeptides and downstream pathways, such as insulin-like peptides and hormonal factors like ecdysteroids and juvenile hormones that regulate diapause. Migrant insects must manage processes like energy metabolism, oogenesis, and flight orientation. Local-scale dispersal requires mechanisms to locate, select, and exploit the most suitable host and habitat for survival and reproduction during the off-season. Here, we present advances in genomic research on pest survival during the off-season, focusing on diapause, migration, and local-scale dispersion. Understanding these phenomena is crucial for developing and optimizing effective integrated pest management programs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have