Abstract
Flip chip technology has been rapidly developed and widely used in the field of microelectronic packaging, and defect detection has also received more and more attention. Aiming at the problem that noise affects the location and extraction of signal defects in ultrasonic testing, the sparse Bayesian learning based on generalized approximate message passing (GAMP-SBL) algorithm is used to extract signal defects, and the over-complete Gabor dictionary is used to reconstruct signal defects to effectively improve Sparse decomposition algorithm. The precision experiment tested the defect simulation signal and the actual ultrasonic signal respectively, and compared with the greedy algorithm. The experimental results show that the GAMP-SBL algorithm can more effectively extract the defect signal under the noise background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.