Abstract
We characterize the Price of Anarchy (POA) in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy by-product of our proofs is the fact that weighted congestion games are âtight,â which implies that the worst-case price of anarchy with respect to pure Nash equilibria, mixed Nash equilibria, correlated equilibria, and coarse correlated equilibria are always equal (under mild conditions on the allowable cost functions). Another is the fact that, like nonatomic but unlike atomic (unweighted) congestion games, weighted congestion games with trivial structure already realize the worst-case POA, at least for polynomial cost functions. We also prove a new result about unweighted congestion games: the worst-case price of anarchy in symmetric games is as large as in their more general asymmetric counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.