Abstract

In our previous work, a novel model called compact radial basis function (CRBF) in a routing topology control has been modelled. The computational burden of Zhang and Gaussian transfer functions was modified by removing the power parameters on the models. The results showed outstanding performance over the Zhang and Gaussian models. This study researched on several hybrids forms of the model where cosine (cos) and sine (sin) nonlinear weights were imposed on the two transfer functions such that Y(out)=logsig(R)+[exp⁡⁡(-abs(R))]*(±cos⁡ or±sin(R)). The purpose was to identify the best hybrid that optimized all of its parameters with a minimum error. The results of the nonlinear weighted hybrids were compared with a hybrid of Gaussian model. Simulation revealed that the negative nonlinear weights hybrids optimized all the parameters and it is substantially superior to the previous approaches presented in the literature, with minimized errors of 0.0098, 0.0121, 0.0135, and 0.0129 for the negative cosine (HSCR-BF-cos), positive cosine (HSCR-BF+cos), negative sine (HSCR-BF-sin), and positive sine (HSCR-BF+sin) hybrids, respectively, while sigmoid and Gaussian radial basis functions (HSGR-BF+cos) were 0.0117. The proposed hybrid could serve as an alternative approach to underground rescue operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.