Abstract

We derive a highly accurate numerical method for the solution of parabolic partial differential equations in one space dimension using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method using some special types of basis functions obtained by integrating Daubechies functions which are compactly supported and differentiable. The time variable is discretized by using various classical finite difference schemes. Theoretical and numerical results are obtained for problems of diffusion, diffusion-reaction, convection-diffusion, and convection-diffusion-reaction with Dirichlet, mixed, and Neumann boundary conditions. The computed solutions are highly favourable as compared to the exact solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.