Abstract

The cable-stayed bridge (CSB) is often used to span over the large rivers on the highway with a high-level navigational clearance; however, CSB is very sensitive to live load. Most of the previous studies on vibration analysis of CSB that focus on complex traffic loading and vehicle dynamic interaction as well as on the bridge deck do not consider braking effects thoroughly. In this paper, the finite element method (FEM) is used to investigate the dynamic response of CSB due to a three-axle vehicle considering braking effects. Vertical reaction forces of axles that change with time make bending vibration of the bridge deck increase significantly. The braking in a span is able to create response in other spans, towers, and cables. In addition, the impact factors are investigated on both FEM and experiment with a case study of Pho Nam bridge (Danang city, Central Vietnam). The results of this study provide an improved understanding of the CSB dynamic behaviors, and they can be used as useful references for bridge codes by practicing engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.