Abstract

Alteration of water levels of the lake/reservoir due to changes in river discharges, upstream abstraction, and drawdown regulation due to hydropower generation has been reported as among the major challenges to fish physiology and ultimately reproduction. Variations in lake/reservoir water levels influence biodiversity and the abundance of lake/reservoir biota. Variations have the greatest impacts in the littoral zones hence, interfering with fish spawning, incubation, and hatching of eggs, as well as the development of larvae, postlarvae, and juveniles. This particular paper reviews the literature available on the effect of the reservoirs/lakes’ water level fluctuations on fish reproduction success using the documentary view method. The literature argues that water level fluctuations have both positive and negative impacts depending on frequency, magnitude, and duration and the species exposed. Extreme fluctuations tend to bring more adverse impacts. It further indicates that extreme and untimely water level fluctuation has direct impacts on the aquatic habitats and ultimately impacts fish assemblage and their populations. Few articles indicate the range of decrease or increase of water level, duration of such events, and effects they have on reservoir/lake ecosystem functions and fish physiology. Nevertheless, quantification of moderate and extreme water level fluctuation and associated effects is lacking. Although water level fluctuation is an important environmental cue for aquatic organisms, literature shows that the reduction of extreme water level variations especially multiannual variations is vital for fish reproduction. Therefore, upstream water use and reservoir operations should take into consideration the effects of water level fluctuations on reservoir structure, biological functions, and ultimate effects on fish reproduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.