Abstract

The metal-organic framework CPO-27 exhibits free coordination sites (open metal sites) and can be prepared with a wide range of metals that influence its properties. It is therefore an intriguing structure to study sorption phenomena. We analyze the water resistance and sorption behavior of these frameworks, with particular attention to the sorption mechanism in detail and the structure of the confined water molecules. For this purpose, we use manometric water vapor sorption analysis and FTIR spectroscopy. The respective metal center orchestrates both the adsorption behavior and the arrangement of the water molecules in the micropores of the framework. The extent to which water molecules form hydrogen bonds (with each other and with framework oxygen atoms) plays a crucial role in the stability of the framework towards water. Water adsorption is governed by the coordination of water molecules to the open metal sites (except for CPO-27-Cu) and subsequent H-bonding. A stepwise adsorption of water is observed, with significant differences depending on the choice of metal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.