Abstract

Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating that there may be a place for neural networks in the “real game” of optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.