Abstract
Hopfield neural networks and affine scaling interior point methods are combined in a hybrid approach for solving linear optimization problems. The Hopfield networks perform the early stages of the optimization procedures, providing enhanced feasible starting points for both primal and dual affine scaling interior point methods, thus facilitating the steps towards optimality. The hybrid approach is applied to a set of real world linear programming problems. The results show the potential of the integrated approach, indicating that the combination of neural networks and affine scaling interior point methods can be a good alternative to obtain solutions for large-scale optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.