Abstract

This paper investigates the optimal locations and capacities of hospital expansion facilities under uncertain future patient demands, considering both spatial and temporal correlations. We propose a novel two-stage distributionally robust optimization (DRO) model that integrates a Spatio-Temporal Neural Network (STNN). Specifically, we develop an STNN model that predicts future hospital occupancy levels considering spatial and temporal patterns in time-series datasets over a network of hospitals. The predictions of the STNN model are then used in the construction of the ambiguity set of the DRO model. To address computational challenges associated with two-stage DRO, we employ the linear-decision-rules technique to derive a tractable mixed-integer linear programming approximation. Extensive computational experiments conducted on real-world data demonstrate the superiority of the STNN model in minimizing forecast errors. Compared to neural network models built for each individual hospital, the proposed STNN model achieves a 53% improvement in average root mean square error. Furthermore, the results demonstrate the value of incorporating spatiotemporal dependencies of demand uncertainty in the DRO model, as evidenced by out-of-sample analysis conducted with both ground truth data and under perfect information scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.