Abstract

Abstract Recent studies report that two types of El Niño events have been observed. One is the cold tongue (CT) El Niño, which is characterized by relatively large sea surface temperature (SST) anomalies in the eastern Pacific, and the other is the warm pool (WP) El Niño, in which SST anomalies are confined to the central Pacific. Here, both types of El Niño events are analyzed in a long-term coupled GCM simulation. The present model simulates the major observed features of both types of El Niño, incorporating the distinctive patterns of each oceanic and atmospheric variable. It is also demonstrated that each type of El Niño has quite distinct dynamic processes, which control their evolutions. The CT El Niño exhibits strong equatorial heat discharge poleward and thus the dynamical feedbacks control the phase transition from a warm event to a cold event. On the other hand, the discharge process in the WP El Niño is weak because of its spatial distribution of ocean dynamic field. The positive SST anomaly of WP El Niño is thermally damped through the intensified evaporative cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.