Abstract
IntroductionHemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.ObjectivesThe aim of this study is to examine the effects of WSS on EC metabolism, specifically evaluating its impact on central carbon metabolism and glycolysis using transcriptomics and tracer metabolomics approaches.MethodsECs were exposed to WSS, and transcriptomic analysis was performed to assess gene expression changes related to metabolic pathways. Tracer metabolomics was used to track metabolic fluxes, focusing on glutamine and glycolytic metabolism. Additionally, chemical inhibition of glutamate dehydrogenase was conducted to evaluate its role in EC fitness under WSS.ResultsTranscriptomic data revealed upregulation of glutamine and glutamate pathways, alongside downregulation of glycolytic activity in ECs exposed to WSS. Tracer metabolomics confirmed that WSS promotes glutamine anaplerosis into the Krebs cycle, while decreasing glycolytic metabolism. Suppression of glutamate dehydrogenase impaired EC fitness under WSS conditions.ConclusionOur findings illuminate that ECs subjected to WSS exhibit a preference for glutamine as a key nutrient source for central carbon metabolism pathways, indicating diminished reliance on glycolysis. This study elucidates the nutritional predilections and regulatory mechanisms governing EC metabolism under WSS in vitro, underscoring the pivotal role of physical stimuli in shaping EC metabolic responses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have