Abstract

Recent advances in liquid chromatography and mass spectrometry have enabled the highly parallel, quantitative measurement of metabolites within a cell and the ability to trace their biochemical fates. In Mycobacterium tuberculosis (Mtb), these advances have highlighted major gaps in our understanding of central carbon metabolism (CCM) that have prompted fresh interpretations of the composition and structure of its metabolic pathways and the phenotypes of Mtb strains in which CCM genes have been deleted. High-throughput screens have demonstrated that small chemical compounds can selectively inhibit some enzymes of Mtb's CCM while sparing homologs in the host. Mtb's CCM has thus emerged as a frontier for both fundamental and translational research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call