Abstract
This study aimed to predict boiling heat transfer more accurately by incorporating the bubble tracking method and conjugate heat transfer into the conventional heat partitioning model. The bubble tracking method is developed to predict boiling heat transfer by continuously simulating the size and location of individual bubbles and simulating realistic phenomena in boiling, unlike previous methods for predicting boiling heat transfer. The method considers several factors that were not previously considered, including the stochastic behavior of the boiling process, interaction between bubbles, interaction between nucleation sites, and microlayer evaporation considering the thickness and radius of the microlayer. Additionally, it was validated for pool boiling experiments. In this study, the model was improved by incorporating conjugate heat transfer for the wall temperature variation that was not considered in the previous study, and the method was also validated with the pool boiling experiment. In this validation, the temporal and spatial surface temperature variation seen in the single-bubble experiment was well simulated, and the trends in heat flux observed in the multi-bubble experiment were well predicted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have