Abstract
We report numerical simulations of natural convection and conjugate heat transfer in a differentially heated cubical cavity packed with relatively large hydrogel beads (d/L=0.2) in a Simple Cubic Packing configuration. We study the influence of a spatially non-uniform, sinusoidally varying, wall temperature on the local flow and heat transfer, for a solid-to-fluid conductivity ratio of 1, a fluid Prandtl number of 5.4, and fluid Rayleigh numbers between 105 and 107. We present local and overall flow and heat transfer results for both sphere packed and water-only filled cavities, when subjected to variations of the wall temperature at various combinations of the amplitude and characteristic phase angle of the imposed wall temperature variations. It is found that imposing a sinusoidal spatial variation in the wall temperature may significantly alter the local flow and heat transfer, and consequently the overall heat transfer. At identical average temperature difference, applying a spatial variation in wall temperature at well-chosen phase angle can lead to significant heat transfer enhancement when compared to applying uniform wall temperatures. However, this is achieved at the cost of increased entropy generation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.