Abstract

This paper describes a numerical study on the steady flow of an incompressible Newtonian fluid past a circular cylinder confined in a plane rectangular channel. Using FLUENT (version 6), two-dimensional steady state computations were carried out for an uniform inlet velocity and for different values of the Reynolds numbers in the range between 0.1 and 200 and blockage ratios (ratio of the channel width to the cylinder diameter) in the range between 1.54 and 20. The flow parameters such as drag coefficient, length of the recirculation zone, and the angle of separation are presented as functions of the Reynolds number and blockage ratio. The total drag coefficient ( C D) was found to decrease with an increase in the blockage ratio ( λ) for a fixed value of the Reynolds number ( Re) and to decrease with increasing Reynolds number for a fixed value of λ. Similarly, for a fixed value of λ, both the angle of separation and the length of the recirculation zone increase with the increasing Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.