Abstract

The present study is concerned with the simulation of incompressible Newtonian fluid flow and heat transfer over a long semicircular bluff body in a channel at low Reynolds numbers. In particular, wall effects on the forced convection from a (heated) semicircular cylinder confined in a horizontal channel are investigated for Reynolds number = 1–40 and blockage ratio = 16.67–50% for air as the working fluid. Flow and thermal fields are found steady for the preceding range of settings. The onset of flow separation increases as the wall confinement increases. The size of the recirculation zone downstream of a semicircular cylinder is seen to increase almost linearly with Reynolds number for a fixed blockage ratio, but it decreases with increasing blockage ratio for a fixed Reynolds number. As expected, total drag coefficient and its components decrease with increasing value of Reynolds number. However, with increasing blockage ratio, the values of these drag coefficients increase. On the basis of equal projected area, the total drag coefficient for the present flow system is found to be greater than the corresponding drag in the case of the unconfined semicircular cylinder. Similarly, the overall drag in the case of a confined semicircular cylinder is found to be greater than that of a confined circular cylinder for the appropriate range of dimensionless control parameters. The maximum augmentation in heat transfer for blockage ratios of 25% and 50% is found to be approximately 16% and 51% with respect to the corresponding value at the blockage ratio of 16.67% at Reynolds number = 1. Finally, the correlations of wake length, drag coefficient, and average Nusselt number are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call