Abstract

Two-phase monolith-type reactors allow intensified heat and mass transfer rates, but often suffer from fluid maldistribution and undesired flow regimes in channels. A cold-flow monolith reactor (0.1 m diameter, 84 channels) is used here to assess liquid distribution and flow regimes at various air and water velocities: resistive probes give an insight of the flow patterns within 5 representative channels located at different radial positions, showing that regime transition to Taylor flow occurs in these channels simultaneously at lower gas and liquid superficial velocities than predicted by single capillary studies (namely uL and uG < 0.1 m s−1).A full mapping of the partial liquid flow rates in the monolith channels is derived by a gravimetric method via specifically designed collectors. In the identified Taylor flow domain, liquid distribution exhibits a W-shaped profile with marked peaks at low liquid velocity (uL = 0.04 m s−1). Increasing the liquid flow rate significantly (uL = 0.1 m s−1) smooths liquid distribution, reducing the maldistribution factor by half. Gas velocity also helps phase uniformity but to a smaller extent. It is estimated that even higher fluid velocities (at least tripled) would be required to feed all channels equally. Adding stack of distribution plates of variable cell density at the top of the monolith does not enhance the quality of the liquid distribution, except at low liquid velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.