Abstract

High-brightness LED lighting has gained high attention in the industry and its market share for general lighting has been rapidly expanding upon the continued progress on improving internal quantum efficiency, light extraction and wavelength conversion. In spite of these promising advances, some key breakthroughs must be made before this technology can be fully adopted into the broad market, such as efficient thermal dissipation and low manufacturing cost. A lion share of cost of an LED module is incurred during the packaging processes after the emissive device stack has been fabricated. Also given the thin thickness of device stack, the packaging structure remains the bottleneck for thermal dissipation. We address these two key challenges with a novel wafer-level packaging structure integrated into the device stack, which enables maximal thermal dissipation rate from active device stack to substrate while allowing high aperture ratio and optimized light output. Our approach applies full wafer-level batch process from epitaxial growth all the way down to packaging for internal and external light extraction as well as wavelength conversion, in order to achieve high throughput and high yield in a scalable and inexpensive manner. Initial prototypes of GaN based blue LED with big chip size have been fabricated without selective electrodes for minimal contact resistance, exhibiting high brightness at relatively low drive voltage (3.5V). As one key step in wafer level packaging, the wafer bonding process was characterized with Moire patterning and Topography and Deformation Measurement to understand the warpage profile and varying temperatures along both heat up and cool down paths, with simulation performed in guidance to final solution for compensating the warpage profile along the bonding process and afterwards. Different approaches were applied in learning the most effective bonding technique for this packaging structure. Further development is ongoing to improve the overall power efficiency and color quality, including optimal materials for ohmic contacts at both electrodes, current-spreading layer, large-area light extraction structure, and integrated phosphor material. This wafer-level packaging technology is scalable to large wafer size for high-throughput and low-cost manufacturing, to achieve both superior thermal management and optimized power efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.