Abstract
The present findings provide experimental evidence for the hypothesis that an impairment of mitochondrial function may be involved in manganese neurotoxicity. Specifically, the treatment of dopaminergic neuronal-derived cell line (PC12) with MnCl 2 produced a significant inhibition of some mitochondrial complexes of the respiratory chain, while in the glial-derived cell line (C6) this effect was not observed. In PC12 the decrease in complex I activity was more pronounced than in other mitochondrial complexes. However treatment of cells with ZnSO 4 exerted no significant variations in enzymatic activities. A direct exposure of mitochondrial fraction to MnCl 2 reduced enzymatic activities of mitochondria in both cell lines adding further support to the proposed theory that the different sensitivity of the cells to manganese may be explained by a difference in uptake or intracellular storage. These data indicate that manganese neurotoxicity could be the result of a direct effect just on complex I activity or due to a secondary effect of oxidative stress induced by an excess of this transition metal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmacology: Environmental Toxicology and Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.