Abstract

The Korba region in northwestern Tunisia has a coastal aquifer that is impacted by intensive irrigation, urban expansion, and sensitivity to SWI. We assessed the vulnerability extent of Korba’s GW to SWI. We utilized a parametric model for GW vulnerability assessment, the GALDIT, which considers six parameters to determine SWI effects. The GALDIT map has four rating categories (≥7.5, 7.5–5, 5–2.5, and <2.5), representing very high, high, moderate, and low vulnerability, respectively. Most of the region was found to be highly vulnerable (44.2% of the surface area), followed by areas characterized by very high (20.3%) and moderate (19.3%) vulnerability. Only 16.2% was found to have low vulnerability. A parameter sensitivity analysis showed that distance from shore and depth of GW represent the determining factors for SWI with variation index values of 24.12 and 18.02%, respectively. Inland advancement of seawater is causing GW salinity to rise, as indicated by a strong Pearson correlation coefficient of 0.75 between SWI indices and the electrical conductivity. Suitable areas for artificial recharge were mainly distributed in the alluvial plains, with a total area of 32.85 km2. Inhibiting SWI requires about 11.31 MCM of artificial recharge in the two most suitable recharge zones in the region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.