Abstract

The present research aims to derive the intrinsic vulnerability of groundwater against contamination using the GIS platform. The study applies DRASTIC model for Ahmedabad district in Gujarat, India. The model uses parameters like depth, recharge, aquifer, soil, topography, vadose zone and hydraulic conductivity, which depict the hydrogeology of the area. The research demonstrates that northern part of district with 46.4% of area is under low vulnerability, the central and southern parts with 48.4% of the area are under moderate vulnerability, while 5.2% of area in the south-east of district is under high vulnerability. It is observed from the study that lower vulnerability in northern part may be mostly due to the greater depth of vadose zone, deeper water tables and alluvial aquifer system with minor clay lenses. The moderate and high vulnerability in central and southern parts of study area may be due to lesser depth to water tables, smaller vadose zone depths, unconfined to semi-confined alluvial aquifer system and greater amount of recharge due to irrigation practices. Further, the map removal and single-parameter sensitivity analysis indicate that groundwater vulnerability index has higher influence of vadose zone, recharge, depth and aquifer parameters for the given study area. The research also contributes to validating the existence of higher concentrations of contaminants/indicators like electrical conductivity, chloride, total dissolved solids, sulphate, nitrate, calcium, sodium and magnesium with respect to groundwater vulnerability status in the study area. The contaminants/indicators exceeding the prescribed limits for drinking water as per Indian Standard 10500 (1991) were mostly found in areas under moderate and high vulnerability. Finally, the research successfully delineates the groundwater vulnerability in the region which can aid land-use policies and norms for activities related to recharge and seepage with respect to existing status of groundwater vulnerability and its quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call