Abstract

Static and dynamic properties of vortices in a two-component Bose-Einstein condensate with Rashba spin-orbit coupling are investigated. The mass current around a vortex core in the plane-wave phase is found to be deformed by the spin-orbit coupling, and this makes the dynamics of the vortex pairs quite different from those in a scalar Bose-Einstein condensate. The velocity of a vortex-antivortex pair is much smaller than that without spin-orbit coupling, and there exist stationary states. Two vortices with the same circulation move away from each other or unite to form a stationary state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.