Abstract

Bose-Einstein condensates (BECs) provide a clear and controllable platform to study diverse intriguing emergent nonlinear effects that appear too in other physical settings, such as bright and dark solitons in mean-field theory as well as many-body physics. Various ways have been elaborated to stabilize bright solitons in BECs, three promising schemes among which are: optical lattices formed by counterpropagating laser beams, nonlinear managements mediated by Feshbach resonance, spin-orbit coupling engineered by dressing atomic spin states (hyperfine states of spinor atomic BECs) with laser beams. By combing the latter two schemes, we discover, from theory to calculations, that the two-component BECs with a spin-orbit coupling and cubic atom-atom interactions, whose nonlinear distributions exhibit a well-defined spatially periodic modulation (nonlinear lattice), can support one-dimensional localized modes of two kinds: fundamental solitons (with a single peak), and soliton pairs comprised of dipole solitons (anti-phase) or two-peak solitons (in-phase). The influence of three physical parameters: chemical potential of the system, strengths of both the Rashba spin-orbit coupling and atom-atom interactions, on the existence and stability of the localized modes is investigated based on linear-stability analysis and direct perturbed simulations. In particular, we demonstrate that the localized modes can be stable objects provided always that both the inter- and intraspecies interactions are attractive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.