Abstract
In this paper, the unconditionally superconvergence analysis is studied for the cubic Schrödinger equation with an energy-stable finite element method. A different approach is proposed to obtain the unconditionally superclose error estimate in H1-norm firstly without using the time splitting technique required in the previous literature. The key to the analysis is to use a priori boundedness of the numerical solution in energy norm and control the nonlinear terms rigorously by two cases, i.e., τ≤h2 and τ≥h2, where τ denotes the temporal size and h is the spatial size. Subsequently, the global superconvergence error estimate in H1-norm is derived by an effective interpolation post-processing approach. Finally, some numerical experiments are carried out to confirm the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.