Abstract

Voltage-gated ion channels are transmembrane proteins responsible for the generation and propagation of action potentials in excitable cells. In the past few years, crystal structures of ion channels have become accessible and, when combined with mutagenesis data, have aided in the discovery of drugs that can modulate ion conduction. However, many traditional drugs lack selectivity and come with adverse side effects. The emergence of photopharmacology has provided an orthogonal way of controlling the activity of compounds, enabling the regulation of ion conduction with light. In this review, we explore the central pore region of voltage-gated sodium and potassium channels, providing insights from both structural and pharmacological perspectives. We discuss the different binding modes of synthetic compounds that can physically occlude the pore and, therefore, block the ion conduction. Moreover, we examine recent advances in the photopharmacology of voltage-gated ion channels, introducing molecular approaches aimed at controlling their activity by using photosensitive drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call