Abstract

The problem of an efficient very large scale integration (VLSI) realization of the direct/inverse fast Fourier transform (FFT/IFFT) for digital subscriber line (DSL) applications is addressed in this paper. The design of scalable and very high-rate (VDSL) modem claims for large and high-throughput complex FFT computations while for massive and fast deployment of the xDSL family low-cost and low-power constraints are key issues. Throughout the paper we explore the design space at different levels (algorithm, arithmetic accuracy, architecture, technology) to achieve the best trade-off between processing performance, hardware complexity and power consumption. A programmable VLSI processor based on a FFT/IFFT cascade architecture plus pre/post-processing stages is discussed and characterized from the high-level choices down to the gate-level synthesis. Furthermore low-power design techniques, based on clock gating and data driven switching activity reduction, are used to decrease the power consumption exploiting the correlation of the FFT/IFFT coefficients and the statistics of the input signals. To this aim both frequency-division and time-division duplex schemes have been considered. The effects of supply voltage scaling and its consequence on circuit performance are examined in detail, as well as the use of different target technologies. Synthesis results for a 0.18μm CMOS standard-cells technology show that the processor is suitable for real-time modulation and demodulation in scalable full-rate VDSL modem (64–4096 complex FFT, 20Msample/s) with a power consumption of few tens of mW. These performances are very interesting when compared to state-of-the-art software implementations and custom VLSI ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.