Abstract

One-hundred ninety-two highly tuneable high density lithographically defined Si dual double quantum dots (DQDs) are fabricated for the first time in parallel via a scalable VLSI compatible fabrication process for the realization of single electron qubits for quantum computing. 25 nm DQDs with less than 5 nm in dimensional variation are achieved via the use of Hydrogen silsesquioxane resist and electron beam lithography. Repeatable coulomb oscillations and coulomb diamonds signifying single electron tunnelling are observed in the electrical characteristics of a Si DQD structure. This demonstrates the viability and dimensionality of our system and paves the way for single electron spin manipulation in scalable Si-based systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call