Abstract

ABSTRACTMycobacterium tuberculosis segregates within multiple subcellular niches with different biochemical and biophysical properties that, upon treatment, may impact antibiotic distribution, accumulation, and efficacy. However, it remains unclear whether fluctuating intracellular microenvironments alter mycobacterial homeostasis and contribute to antibiotic enrichment and efficacy. Here, we describe a live dual-imaging approach to monitor host subcellular acidification and M. tuberculosis intrabacterial pH. By combining this approach with pharmacological and genetic perturbations, we show that M. tuberculosis can maintain its intracellular pH independently of the surrounding pH in human macrophages. Importantly, unlike bedaquiline (BDQ), isoniazid (INH), or rifampicin (RIF), the drug pyrazinamide (PZA) displays antibacterial efficacy by disrupting M. tuberculosis intrabacterial pH homeostasis in cellulo. By using M. tuberculosis mutants, we confirmed that intracellular acidification is a prerequisite for PZA efficacy in cellulo. We anticipate this imaging approach will be useful to identify host cellular environments that affect antibiotic efficacy against intracellular pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.