Abstract

Hf1-xZrxO2 (HZO) is a complementary metal-oxide-semiconductor (CMOS)-compatible ferroelectric (FE) material with considerable potential for negative capacitance field-effect transistors, ferroelectric memory, and capacitors. At present, however, the deployment of HZO in CMOS integrated circuit (IC) technologies has stalled due to issues related to FE uniformity. Spatially mapping the FE distribution is one approach to facilitating the optimization of HZO thin films. This paper presents a novel technique based on synchrotron X-ray nanobeam absorption spectroscopy capable of mapping the three main phases of HZO (i.e., orthorhombic (O), tetragonal (T), and monoclinic (M)). The practical value of the proposed methodology when implemented in conjunction with kinetic-nucleation modeling is demonstrated by our development of a T → O annealing (TOA) process to optimize HZO films. This process produces an HZO film with the largest polarization values (Ps = 64.5 μC cm-2; Pr = 35.17 μC cm-2) so far, which can be attributed to M-phase suppression followed by low-temperature annealing for the induction of a T → O phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.