Abstract

Recent work has shown that oxytocin is involved in more than lactation and uterine contraction. The paraventricular nucleus of the hypothalamus (PVN) contains neuroendocrine neurons that control the release of hormones, including vasopressin and oxytocin. Other populations of PVN neurons do not release hormones, but rather project to and release neurotransmitters onto other neurons in the CNS involved in fluid retention, thermoregulation, sexual behavior and responses to stress. Activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress, yet how oxytocin can affect heart rate and cardiac function is unknown. While anatomical work has shown the presence of peptides, including oxytocin, in the projections from the PVN to parasympathetic nuclei, electrophysiological studies to date have only demonstrated release of glutamate and activation of fast ligand gated receptors in these pathways. In this study, using rats, we directly show, using sniffer CHO cells that express oxytocin receptors and the Ca2+ indicator R-GECO, that optogenetic activation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem activates oxytocin receptors in the dorsomotor nucleus of the vagus (DMNV). We also demonstrate that while a single photoactivation of PVN terminals only activates glutamatergic receptors in brainstem cardiac vagal neurons (CVNs), neurons that dominate the neural control of heart rate, both the paired pulse facilitation, and sustained enhancement of glutamate release in this pathway is mediated by activation of oxytocin receptors. Our results provide direct evidence that a pathway from the PVN likely releases oxytocin and enhances short-term plasticity of this critical autonomic connection.

Highlights

  • Recent work has shown that vasopressin neurons in the paraventricular nucleus of the hypothalamus (PVN) are critical for the cardiovascular responses to challenges such as stress and dehydration, and are involved in the maintenance and/or generation of cardiovascular diseases, including hypertension [1], [2,3,4,5]

  • In this study we test if photoactivation of channelrhodopsin-2 (ChR2) expressing PVN fibers in the brainstem releases oxytocin and activates oxytocin receptors using sniffer CHO cells that are engineered to be highly sensitive to oxytocin by co-expression of oxytocin receptors and the Ca2+ indicator red fluorescent genetically encoded Ca2+ indicator (R-GECO)

  • 55.7+3.7% of ChR2-EYFP PVN fibers in the dorsal motor nucleus of the vagus (DMNV) are positive for oxytocin

Read more

Summary

Introduction

Recent work has shown that vasopressin neurons in the paraventricular nucleus of the hypothalamus (PVN) are critical for the cardiovascular responses to challenges such as stress and dehydration, and are involved in the maintenance and/or generation of cardiovascular diseases, including hypertension [1], [2,3,4,5]. Whereas vasopressin (AVP) neurons in the PVN are sympathoexcitatory, and activation of vasopressin receptors inhibits cardioinhibitory parasympathetic cardiac vagal neurons (CVNs) [6], recent work has shown activation of oxytocin receptors can be cardioprotective and reduces the adverse cardiovascular consequences of anxiety and stress [7], [8], [9]. We test the hypothesis that stimulation of the pathway from the PVN to CVNs activates oxytocin receptors and elicits functional changes in synaptic plasticity within this excitatory cardioprotective pathway

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call