Abstract

Experiments were conducted to determine if the chronic absence of the neurotransmitter oxytocin (OT) in null mice resulted in alterations in the responsiveness and abundance of central OT receptors. Self-grooming elicited by intracerebroventricularly administered OT was studied as an indicator of the activation of central OT receptors and autoradiography was used to map the distribution and density of OT receptors in OT null and wild type mice. The intracerebroventricular administration of OT, but not vehicle, artificial cerebrospinal fluid (aCSF), produced a robust increase in grooming behavior in both OT null and wild type animals, P<.001. However, OT-induced grooming was significantly greater in OT null than wild type mice, P<.005. The enhanced grooming was selective to OT as indicated by the finding that grooming to intracerebroventricular arginine vasopressin (AVP) was of the same magnitude in both OT null and wild type mice. OT-induced grooming appears to be mediated through the activation of OT receptors because pretreatment of animals with an OT antagonist, Atosiban, abolished OT-induced grooming, but not AVP-induced grooming. OT receptor distribution and binding in brains of OT null and wild type mice were examined by autoradiography and were not significantly different. The results indicate that the chronic absence of OT in null mice leads to an increase in OT receptor responsiveness that contributes to the augmented grooming activity elicited by centrally administered OT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call