Abstract
Credit scorecards are essential tools for banks to assess the creditworthiness of loan applicants. While advanced machine learning models like XGBoost and random forest often outperform traditional logistic regression in predictive accuracy, their lack of interpretability hinders their adoption in practice. This study bridges the gap between research and practice by developing a novel framework for constructing interpretable credit scorecards using Shapley values. We apply this framework to two credit datasets, discretizing numerical variables and utilizing one-hot encoding to facilitate model development. Shapley values are then employed to derive credit scores for each predictor variable group in XGBoost, random forest, LightGBM, and CatBoost models. Our results demonstrate that this approach yields credit scorecards with interpretability comparable to logistic regression while maintaining superior predictive accuracy. This framework offers a practical and effective solution for credit practitioners seeking to leverage the power of advanced models without sacrificing transparency and regulatory compliance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.