Abstract
We visualize the Kohn-Sham kinetic energy density (KED) and the ingredients--the electron density, its gradient, and Laplacian--used to construct orbital-free models of it, for the AE6 test set of molecules. These are compared to related quantities used in metaGGA's, to characterize two important limits--the gradient expansion and the localized-electron limit typified by the covalent bond. We find the second-order gradient expansion of the KED to be a surprisingly successful predictor of the exact KED, particularly at low densities where this approximation fails for exchange. This contradicts the conjointness conjecture that the optimal enhancement factors for orbital-free kinetic and exchange energy functionals are closely similar in form. In addition we find significant problems with a recent metaGGA-level orbital-free KED, especially for regions of strong electron localization. We define an orbital-free description of electron localization and a revised metaGGA that improves upon atomization energies significantly.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have