Abstract

We present a comprehensive study of single-point kinetic energy density functionals (KEDFs) to be used in orbital-free density functional theory (DFT) calculations. We first propose a form of KEDFs based on a pointwise Kohn-Sham (KS) kinetic energy density (KED) and electron localization function (ELF) analysis. We find that the ELF and modified enhancement factor have a very strong and transferable correlation with the reduced density in various bulk metals. The non-self-consistent kinetic energy errors predicted by our KEDF models are decreased greatly compared to previously reported generalized gradient approximation (GGA) KEDFs. Second, we perform self-consistent calculations with various single-point KEDFs and investigate their numerical convergence behavior. We find striking numerical instabilities for previous GGA KEDFs; most of the GGA KEDFs fail to converge and show unphysical densities during the optimization. In contrast, our KEDFs demonstrate stable convergence, and their self-consistent results of various bulk properties agree reasonably well with KSDFT. A further detailed KED analysis reveals an interesting bifurcation phenomenon in defective metals and alloys, which may shed light on directions for future KEDF development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call