Abstract
Industrial delta robots with motion-and vision-base controllers, providing high-precision and fast/flexible motion, normally come with high cost and complex software. Low-cost delta robots with vision solution could be beneficial to vast industries to increase productivity and to reduce labor cost. A delta robot using a low-cost motion controller and an open-source vision system is developed to accomplish real-time visual servoing with high motion accuracy. In the low-cost motion controller, three parallel links’ upper-arm angles, computed from inverse kinematics for a given desired target position by a high-level computer, are used as reference position commands for three AC-motor drives. A low-level Arduino microcontroller is employed to convert these links’ angles to high-frequency pulses and on-off signals for synchronously controlling three motor angles and direction. Experimental results of a point-to-point motion tracking exhibit high-precision repeatability. Synchronous pulse generation from Arduino microcontroller and structural misalignments of parallel links are major challenges for achieving high motion accuracy. For the vision-based system, the YOLOv5 algorithm is implemented along with a Python GUI Application. Then, the visual-servo performance is evaluated on localization accuracy and recognition rate of 3-color objects. However, a partial object occlusion can reduce the visual classification rate. A sorting task of 4-category medicine boxes demonstrate a high-speed pick-and-place operation using the low-cost visual-servo system of this delta robot. Therefore, integration of low-cost visual servoing with this delta robot can revolutionize various industries, like automobile, pharmaceutical, and food sectors, in separating, sorting and packing applications.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have