Abstract

We propose a visual event recognition framework for consumer domain videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). First, we propose a new aligned space-time pyramid matching method to measure the distances between two video clips, where each video clip is divided into space-time volumes over multiple levels. We calculate the pair-wise distances between any two volumes and further integrate the information from different volumes with Integer-flow Earth Mover's Distance (EMD) to explicitly align the volumes. Second, we propose a new cross-domain learning method in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time feature and static SIFT feature) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web domain and consumer domain). For each pyramid level and each type of local features, we train a set of SVM classifiers based on the combined training set from two domains using multiple base kernels of different kernel types and parameters, which are fused with equal weights to obtain an average classifier. Finally, we propose a cross-domain learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), to learn an adapted classifier based on multiple base kernels and the prelearned average classifiers by minimizing both the structural risk functional and the mismatch between data distributions from two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.