Abstract

In this work, we propose to leverage a large number of loosely labeled web videos (e.g., from YouTube) and web images (e.g., from Google/Bing image search) for visual event recognition in consumer videos without requiring any labeled consumer videos. We formulate this task as a new multi-domain adaptation problem with heterogeneous sources, in which the samples from different source domains can be represented by different types of features with different dimensions (e.g., the SIFT features from web images and space-time (ST) features from web videos) while the target domain samples have all types of features. To effectively cope with the heterogeneous sources where some source domains are more relevant to the target domain, we propose a new method called Multi-domain Adaptation with Heterogeneous Sources (MDA-HS) to learn an optimal target classifier, in which we simultaneously seek the optimal weights for different source domains with different types of features as well as infer the labels of unlabeled target domain data based on multiple types of features. We solve our optimization problem by using the cutting-plane algorithm based on group based multiple kernel learning. Comprehensive experiments on two datasets demonstrate the effectiveness of MDA-HS for event recognition in consumer videos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.