Abstract
We propose a visual event recognition framework for consumer videos by leveraging a large amount of loosely labeled web videos (e.g., from YouTube). Observing that consumer videos generally contain large intraclass variations within the same type of events, we first propose a new method, called Aligned Space-Time Pyramid Matching (ASTPM), to measure the distance between any two video clips. Second, we propose a new transfer learning method, referred to as Adaptive Multiple Kernel Learning (A-MKL), in order to 1) fuse the information from multiple pyramid levels and features (i.e., space-time features and static SIFT features) and 2) cope with the considerable variation in feature distributions between videos from two domains (i.e., web video domain and consumer video domain). For each pyramid level and each type of local features, we first train a set of SVM classifiers based on the combined training set from two domains by using multiple base kernels from different kernel types and parameters, which are then fused with equal weights to obtain a prelearned average classifier. In A-MKL, for each event class we learn an adapted target classifier based on multiple base kernels and the prelearned average classifiers from this event class or all the event classes by minimizing both the structural risk functional and the mismatch between data distributions of two domains. Extensive experiments demonstrate the effectiveness of our proposed framework that requires only a small number of labeled consumer videos by leveraging web data. We also conduct an in-depth investigation on various aspects of the proposed method A-MKL, such as the analysis on the combination coefficients on the prelearned classifiers, the convergence of the learning algorithm, and the performance variation by using different proportions of labeled consumer videos. Moreover, we show that A-MKL using the prelearned classifiers from all the event classes leads to better performance when compared with A-MK- using the prelearned classifiers only from each individual event class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.