Abstract
This paper describes a vision-based obstacle detection and navigation system for use as part of a robotic solution for the sustainable intensification of broad-acre agriculture. To be cost-effective, the robotics solution must be competitive with current human-driven farm machinery. Significant costs are in high-end localization and obstacle detection sensors. Our system demonstrates a combination of an inexpensive global positioning system and inertial navigation system with vision for localization and a single stereo vision system for obstacle detection. The paper describes the design of the robot, including detailed descriptions of three key parts of the system: novelty-based obstacle detection, visually-aided guidance, and a navigation system that generates collision-free kinematically feasible paths. The robot has seen extensive testing over numerous weeks of field trials during the day and night. The results in this paper pertain to one particular 3 h nighttime experiment in which the robot performed a coverage task and avoided obstacles. Additional results during the day demonstrate that the robot is able to continue operating during 5 min GPS outages by visually following crop rows.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have