Abstract

This paper describes a vision-based obstacle detection and navigation system for use as part of a robotic solution for the sustainable intensification of broad-acre agriculture. To be cost-effective, the robotics solution must be competitive with current human-driven farm machinery. Significant costs are in high-end localization and obstacle detection sensors. Our system demonstrates a combination of an inexpensive global positioning system and inertial navigation system with vision for localization and a single stereo vision system for obstacle detection. The paper describes the design of the robot, including detailed descriptions of three key parts of the system: novelty-based obstacle detection, visually-aided guidance, and a navigation system that generates collision-free kinematically feasible paths. The robot has seen extensive testing over numerous weeks of field trials during the day and night. The results in this paper pertain to one particular 3 h nighttime experiment in which the robot performed a coverage task and avoided obstacles. Additional results during the day demonstrate that the robot is able to continue operating during 5 min GPS outages by visually following crop rows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.