Abstract

Integration of both global positioning system (GPS) and inertial navigation system (INS) assures a continuous and accurate navigation system. In low-cost low-precision micro-electromechanical system (MEMS)-based INS/GPS integration navigation systems, one of the major concerns is high-level stochastic noise and uncertainties existing in INS sensors and complex model of real noisy data. In such uncertainty-oriented environments, an intelligence structure with extra degrees of freedom which can handle and model a high-level of uncertainties in INS sensors, and an efficient denoising technique as a precursor to the intelligence structure can be efficient solutions. Our approach to these problems is taken in different steps. First, a denoising technique based on empirical mode decomposition (EMD) is used to provide more accurate INS sensor outputs and better generalization ability. Second, an optimized interval type-2 fuzzy neural network is used to model and handle a high-level of uncertainties efficiently and estimate the positioning error of INS sensors when GPS signals are blocked, and still meet both accuracy maximization and complexity minimization. Fast learning and convergence of the algorithm and less computational complexity can be achieved by using an extended Kalman filter in the learning of algorithm and an accurate and simple type-reduction, respectively, which can be utilized in real-time applications with significant performance. The results of EMD-based denoising technique, as a preprocessing phase, verify superior performance in comparison with the discrete wavelet transform denoising method in the signal-to-noise ratio improvement for raw and noisy signals of INS sensors. To verify the effectiveness of our proposed model, we applied challenging conditions consisting of low-cost low-precision inertial sensors based on MEMS technology, long-term outages of GPS satellites, a high-speed experimental test vehicle and noisy real-world data in the real-time flight experiments. The achieved experimental accuracies are compared with the results that we have achieved in other methods, and our proposed method verifies significant improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.