Abstract
Metamaterial absorbers over a broadband spectrum with high absorption, good angular tolerance, and easy configurations have essential importance for optical and optoelectronic devices. In this study, a hybrid metamaterial absorber comprising multilayered cermet thin films (multi-cermet) with tapered structure is designed and experimentally demonstrated. Combining optical interference of multi-cermet films and optical field localization of nano-cone structures, the average absorbance of both simulation and measurement are more than 98% in an ultrabroad bandwidth (300-3000nm), and the proposed absorber shows a good angular tolerance as well. The composite process of two easy-operated and efficient methods, colloidal lithography, and magnetron sputtering, is employed for large-area fabrication. In addition, owing to flexible polyimide substrate, the proposed absorber also shows good bending and heating resistance, which reflects its potential in engineering application.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have