Abstract
In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have