Abstract

Using a quartz crystal resonator system operating at 5 MHz the shear wave propagating properties of bovine serum albumin (BSA) have been monitored as it is adsorbed on a gold surface from a phosphate buffered saline (PBS) solution. Employing a 2-layer model for the combined BSA layer and PBS solution, the viscoelasticity of the BSA layer may be determined in real time as the adsorption on gold proceeds. The viscoelasticity is found to depend on the pH of the PBS solution and changes gradually over long times. It is suggested that at the low frequency of the measurement, large-scale molecular motions are being monitored which are a consequence of the structural changes in the protein molecules undergoing adsorption. Such low-frequency molecular motions are difficult to examine by any other technique. The results and their interpretation in viscoelastic terms demonstrate the considerable potential of the quartz crystal resonator system for assessing the stability of proteins on surfaces and their suitability as coatings for prosthetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.